منظومه شمسی در همسایگی یک دنیای یخی عظیم

دانشمندان و اخترشناسان به تازگی شئ یخ زده جدیدی را در نزدیکی منظومه شمسی رصد نموده اند که به نظر می رسد بتوان به کمک آن اطلاعاتی درباره نهمین سیاره منظومه مان بدست آورد. در ادامه با گویا آی تی همراه باشید.

دانشمندان به تازگی خبر کشف یک جهان یخ زده را در حاشیه منظومه شمسی منتشر نموده اند. این شئ که در فاصله ای بسیار دور از ما قرار گرفته است در واقع نهمین سیاره منظومه شمسی خواهد بود که L91 نام گذاری شده است. این سیاره جدید در دسته اجسام آسمانی دور دستی قرار می گیرد که آنها را TNO یا «اجسام فرانپتونی» می نامیم. به این معنا که جایی فراتر از نپتون واقع شده اند.

این سیاره که فاصله بسیار زیادی از خورشید دارد مدت زمانی زیادی را صرف گردش به  دوره آن می کند. تاکنون نپتون به عنوان دورترین سیاره منظومه شمسی با فاصله ای معادل ۴٫۵ میلیارد کیلومتر از خورشید شناخته می شد و وجود آن به طور قطعی به عنوان یک سیاره تایید شده است. فاصله نپتون تا خورشید به میزان ۳۰ واحد نجومی است که به معنی آن است که این سیاره در حدود ۳۰ برابر فاصله زمین تا خورشید از مرکز منظومه شمسی فاصله دارد. اینک با کشف این سیاره جدید  لقب  دورترین سیاره منظومه شمسی به L91‌ اختصاص خواهد یافت.

solar-system

همانطور که حدس می زنید قوس L91‌ از این میزان نیز گسترده تر است و فاصله آن تا خورشید به میزان ۵۰ واحد نجومی اندازه گیری شده است. از آنجا که مدار حرکتی این جرم آسمانی به صورت بیضوی است بیشترین فاصله آن در طول حرکت به دور خورشید در حدود۱۴۳۰ واحد نجومی ارزیابی شده است. فاصله L91‌ در حرکت بر روی مدار بیضوی خود پس از رسیدن به میزان بیشینه مجددا کاهش می یابد.

به وسیله اطلاعات بدست آمده از این سیاره یک چرخش آن به دور خورشید برابر با ۲۰ هزار سال می باشد. این مدت زمان طولانی L91‌ را در رتبه دومین TNO‌ با فاصله زیاد از خوزشید قرار می دهد.

رتبه دورترین TNO‌ در منظومه شمسی متعلق به سیارک تازه کشف شده FE72 است که برای اولین بار در سال ۲۰۱۴ رویت شد و فاصله آن از خورشید برابر ۴۲۷۴ واحد نجومی محاسبه شده است.

پیش از کشف L91 رتبه دوم متعلق به سیاره کوچک سدنا با ۹۳۹ واحد نجومی بود که اینک این سیاره به رتبه سوم تنزل مقام می یابد.

در این میان یک نکته اعجاب انگیز و قابل تامل درباره سیاره یخ زده L91 وجود دارد و آن، این است که  به نظر می رسد مسیر مداری این سیاره در حال تغییر بوده و این دنیای کوچک در حال جا به جا شدن بین یک پیکره آسمانی با نام ابر اورت و گروه دیگری با نام کمربند کویپر است.

تا کنون در هیچ TNO ای چنین انتقالی مشاهده نشده است و محققان بر این باورند که شاید یکی از اصلی ترین دلایل این انتقال تاثیرات کششی نپتون در طول تاریخ باشد که چنین تاثیری را بر روی سیاره مورد بحث گذاشته است. البته این نظریه نتوانسته همه اخترشناسان را قانع نماید و آنها هنوز در حال تحقیق بر روی این شئ جدید هستند.

کنستانتین باتگین (Konstantin Batygin) دانشمند سیاره‌شناس از موسسه‌ی فناوری کالیفرنیا (کلتک)، که در این یافته نقشی نداشته، در گفتگو با ساینس گفت:

 چنین سناریویی نامحتمل نیست، اما من باور دارم که ما نیاز به چنین روندی نداریم.

از آنجایی که باگتین عضو یک تیم پژوهشی بزرگ درباره منظومه شمسی است که عقیده دارند جهان پیرامون ما در منظومه شمسی بسیار گسترده تر از چیزی است که ما قادر به رویت کردن آن هستیم. این گروه بر این باورند که تغییرات پیش روی L91 میتواند از منشا همان اجرام کوچک و بزرگ دیگری باشد که در خارج از دید ما در منظومه شمسی قرار گرفته اند.

icy-world-in-solar-system

بانیستر یکی دیگر از دانشمندانی است که با تیم خود در حال تحقیق در این زمینه می باشد هرچند نتایج تحقیق جدید آنان تاکنون منتشر نشده است اما آنها در حال تحلیل بر روی این موضوع هستند که آیا سیاره ای با جرم تقریبی تعیین شده برای L91 به میزان حدود ۱۰ برابر کره زمین قادر است چنین حرکت ها و جا به جایی های عجیبی را انجام دهد یا خیر؟ که به نظر می رسد پاسخ تیم برای این سوال تا حدودی منفی بوده است.

اما با یافت شدن تعدا بیشتری از این اجرام آسمانی در حاشیه ی منظومه شمسی، کم کم می توان تجزیه و تحلیل قوی تر بر آنچه در دنیای پیرامونمان رخ می دهد انجام دهیم همانطور که  یکی از اعضای گروه، مگ شوامب (Meg Schwamb) از رصدخانه‌ی گمینی در هایلو هاوایی در گفتگو با الکساندرا ویتز (Alexandra Witze) در نیچر در این باره گفت:

هر بار که ما یکی دیگر از این اجرام آسمانی را شناسایی می ‌کنیم، در واقع تکه‌ ی دیگری به پازل ما افزوده می‌ شود.

در پایان لازم است اشاره نماییم که تمامی یافته های عنوان شده در این مطلب بر اساس اطلاعات اخیر انجمن نجوم آمریکا برای علوم سیاره ای در  پاسادنا، کالیفرنیا است که هفته گذشته تشکیل گردیده است.

منبع SCIENCEALERT

دامنه اطلاعات ما از جهان هستی به کجا محدود خواهد شد؟

در این مطلب قصد داریم به برخی سوالات کاربردی درباره جهان هستی بپردازیم. سوالاتی که قطعا برای هرکدام از ما پیش آمده است. سوالاتی چون فراتر از کیهان چه چیزی وجود دارد؟ جهان ما در حال تبدیل شدن به چه چیزی است؟ آیا جهان هستی تا ابد منبسط خواهد شد؟آیا مرزی برای دانش انسان وجود دارد؟ آیا محدودیت‌های اساسی در مسیر علم قرار دارد؟

اگر شما نیز مشتاق به فهم پاسخ این سوالات هستید بهتر است تا انتهای این مقاله با گویا آی تی همراه باشید.

در پاسخ به تمامی این سوالات باید گفت ما هنوز هیچ پاسخی برای این سوالات نداریم و نمی توانیم به طور قطعی بگوییم که آیا حد و مرزی برای دانش ما وجود دارد یا خیر. اما می توان گفت به نظر نمی رسد مرزی برای دانسته های ما وجود ندارد. هرچند فراز و نشیب های بیشماری در مسیر یادگیری ما قرار گرفته اند اما هنوز به قطعیت نمی توان نظری در این باره داد. البته هستند افرادی که معتقدند ما هیچ وقت به علم پیدایش جهان دست نخواهیم یافت و هیچ زمان نخواهیم فهمید که پیش از انفجار بزرگ چه اتفاقی رخ داده است. اما به نظر می رسد این تفکرات کمی خودخواهانه باشد زیرا هیچ کس مرز دانش انسان را نمی داند و همانطور که یافته های امروز ما از نجوم در ۵۰ سال پیش غیر ممکن به نظر می رسید ما نیز نمی توانیم به قطعیت بگوییم که تا چه میزان فرا خواهیم گرفت.

how-much-more-can-we-learn-about-the-universe2

البته این صحبت به آن معنا نخواهد بود که ما در طبیعت محدودیتی نداریم زیرا ما در مشاهده و مطالعه ی طبیعت محدودیت هایی داریم به عنوان مثال  اصل عدم قطعیت هایزنبرگ بیان می کند که نمی‌ توان تمام مشخصات حرکتی یک ذره را در هر لحظه از زمان دانست. همچنین بیشترین فاصله ‌ای که در یک بازه ‌ی زمانی قادر به دیدن و حرکت در آن هستیم توسط سرعت نور محدود شده است. اما این محدودیت‌ها صرفا به نشان دهنده این است که چه چیزی را نمی‌ توانیم مشاهده کنیم، نه اینکه چه چیزی را نمی ‌توانیم یاد بگیریم. علیرغم وجود اصل عدم قطعیت، ما توانسته ‌ایم مکانیک کوانتوم را توسعه دهیم و یا در زمینه بررسی رفتار اتم‌ ها پیش رفت هایی چشمگیر داشته باشیم. ما امروزه توانسته‌ ایم ذرات به اصطلاح مجازی را کشف کنیم. ذراتی که نمی ‌توانیم به طور مستقیم ببینیم، با این حال به وسیله شواهد و قوانین فیزیکی وجود آنها را پیش ‌بینی می ‌کنیم.

این موضوع که جهان در حال انبساط است به عنوان یک نقطه شروع در علم ما جای می گیرد و اگر با ما تکیه بر دانسته ها و اکتشافات جدید خود و همچنین استنتاج حوادث پیرامون مان پیش برویم خواهیم توانست به نقطه ای بسیار دور در تاریخ گذشته هستی برسیم. به زمانی که تمام عالم هستی در نقطه ای قابل رویت جمع شده بود.

در یک لحظه، که اکنون آن را  لحظه‌ ی انفجار بزرگ (Big Bang)  می نامیم ، قوانین فیزیکی فعلی شناخته شده از هم فرو‌پاشید، چون بین نسبیت عام و مکانیک کوانتوم ناسازگاری به وجود آمد. نسبیت عام به توصیف گرانش می ‌پردازد و مکانیک کوانتوم نیز فیزیک ذرات میکروسکوپی است. اما خیلی از دانشمندان این ناسازگاری را یک محدودیت جدی برای علم نمی ‌دانند، چون ما انتظار داریم که اصل نسبیت عام بعد از تصحیح، به بخشی از تئوری کوانتوم پیوسته تبدیل شود. نظریه‌ ی ریسمان نمونه ‌ای از این تلاش ‌ها است.

how-much-more-can-we-learn-about-the-universe3

با تصور چنین نظریه ‌ای، شاید قادر باشیم به این سوال پاسخ دهیم که قبل از انفجار بزرگ چه اتفاقی رخ داده است. البته این موضوع نیز قابل تامل است که شاید پیش از انفجار بزرگ اصلا هیچ چیزی وجود نداشته باشد. ساده ‌ترین پاسخ مطرح شده در مورد انفجار بزرگ، کمترین میزان مقبولیت را در بین دانشمندان داشته است. پاسخ به این شکل است که در لحظه‌ ی انفجار بزرگ نسبیت عام با نسبیت خاص به هم پیوستند تا یک حقیقت واحد را تشکیل دهند: فضازمان. اگر فضا توسط انفجار بزرگ به وجود آمده باشد، شاید زمان هم به همین ترتیب به وجود آمده باشد. در آن صورت، هیچ “’گذشته‌ای” وجود نداشته است و سوال مطرح شده بی مورد خواهد بود. بنابراین و با توجه به این موضوع باید منتظر یک جواب منطبق بر کوانتوم گرانشی باشیم و پس از اثبات آن فرضیه به شکل آزمایشگاهی خواهیم توانست خواهیم توانست پاسخی جدید و قابل اتکا ارائه دهیم.

درادامه با یک سوال دیگر مواجه هستیم و آن این است که مرزهای کیهان ما درکجا قرار دارد؟ گستردگی جهان ما تا کجا ادامه دارد؟ در واقع باید گفت پاسخ این سوالات نیز هنوز برای بشر مبهم است و برای پاسخ به آن تنها به حدس و گمان هایی ساده اکتفا نموده ایم که آن را با شما درمیان می گذاریم.

همانطور که گفتیم فضا و زمان به صورت خود به خودی و به یکباره در اثر انفجار بزرگ پدید آمده اند پس می توان گفت که انرژی کلی آن ها برابر صفر است. بر اساس اصول پایه ای فیزیک می توان گفت که انرژی موجود در غالب یک جرم با انرژی میدان گرانشی آن برابر است. به زبان ساده تر باید بگوییم مجموع مقادیر چیزی که از هیچ پدید آمده است باید همان هیچ باشد. با توجه به علم فعلی ما تنها جهانی قادر به دارا بودن چینی ویژگی هایی است که شکل هندسی آن گرد باشد. به عنوان مثال وقتی بر روی یک کره حرکت می کنیم با هیچ مرزی مواجه نخواهیم شد اما می دانیم که محدودیت هایی برای آن وجود دارد. همین شرایط می ‌تواند در جهان هم صادق باشد. اگر ما به انداز‌ه‌ ی کافی در یک جهت به دوردست نگاه کنیم، می‌ توانیم قسمت پشت سر خود را ببینیم.

how-much-more-can-we-learn-about-the-universe4

اما در عمل ما قادر به انجام چنین کاری نیستیم  و دلیل آن احتمالا می تواند این موضوع باشد که جهان قابل رویت ما خود بخشی از جهان بزرگتریست که ما توانایی دیدن آن را نداریم. علت این امر باید با آنچه که انبساط جهان (inflation) نامیده می ‌شود در ارتباط باشد. بیشتر جهان‌هایی که خود به خود از انداز‌ه‌ی میکروسکوپی به وجود می ‌آیند، به جای آن که برای میلیاردها سال عمر کنند، در یک زمان میکروسکوپیک از هم فرو می ‌پاشند. اما در بعضی موارد،  انرژی دادن به فضای خالی باعث می ‌شود که جهان در یک بازه‌ ی زمانی کوتاه به صورت تصاعدی متورم شود. بر این اساس تصور ما این است که در لحظات اولیه ی پس از انفجار بزرگ یک بازه زمانی پدید آمده است که در آن جهان انبساط می یابد و به این طریق جهان بلافاصله پس از تولد فرو نپاشیده است.

بنابراین می توانیم بگوییم که ممکن است زمانی انبساط در بخشی از جهان که ما در آن حضور داریم متوقف شود اما به این معنا نیست که تمام جهان از انبساط  خارج شده است.

 

منبع NAUTIL

دامنه اطلاعات ما از جهان هستی به کجا محدود خواهد شد؟

در این مطلب قصد داریم به برخی سوالات کاربردی درباره جهان هستی بپردازیم. سوالاتی که قطعا برای هرکدام از ما پیش آمده است. سوالاتی چون فراتر از کیهان چه چیزی وجود دارد؟ جهان ما در حال تبدیل شدن به چه چیزی است؟ آیا جهان هستی تا ابد منبسط خواهد شد؟آیا مرزی برای دانش انسان وجود دارد؟ آیا محدودیت‌های اساسی در مسیر علم قرار دارد؟

اگر شما نیز مشتاق به فهم پاسخ این سوالات هستید بهتر است تا انتهای این مقاله با گویا آی تی همراه باشید.

در پاسخ به تمامی این سوالات باید گفت ما هنوز هیچ پاسخی برای این سوالات نداریم و نمی توانیم به طور قطعی بگوییم که آیا حد و مرزی برای دانش ما وجود دارد یا خیر. اما می توان گفت به نظر نمی رسد مرزی برای دانسته های ما وجود ندارد. هرچند فراز و نشیب های بیشماری در مسیر یادگیری ما قرار گرفته اند اما هنوز به قطعیت نمی توان نظری در این باره داد. البته هستند افرادی که معتقدند ما هیچ وقت به علم پیدایش جهان دست نخواهیم یافت و هیچ زمان نخواهیم فهمید که پیش از انفجار بزرگ چه اتفاقی رخ داده است. اما به نظر می رسد این تفکرات کمی خودخواهانه باشد زیرا هیچ کس مرز دانش انسان را نمی داند و همانطور که یافته های امروز ما از نجوم در ۵۰ سال پیش غیر ممکن به نظر می رسید ما نیز نمی توانیم به قطعیت بگوییم که تا چه میزان فرا خواهیم گرفت.

how-much-more-can-we-learn-about-the-universe2

البته این صحبت به آن معنا نخواهد بود که ما در طبیعت محدودیتی نداریم زیرا ما در مشاهده و مطالعه ی طبیعت محدودیت هایی داریم به عنوان مثال  اصل عدم قطعیت هایزنبرگ بیان می کند که نمی‌ توان تمام مشخصات حرکتی یک ذره را در هر لحظه از زمان دانست. همچنین بیشترین فاصله ‌ای که در یک بازه ‌ی زمانی قادر به دیدن و حرکت در آن هستیم توسط سرعت نور محدود شده است. اما این محدودیت‌ها صرفا به نشان دهنده این است که چه چیزی را نمی‌ توانیم مشاهده کنیم، نه اینکه چه چیزی را نمی ‌توانیم یاد بگیریم. علیرغم وجود اصل عدم قطعیت، ما توانسته ‌ایم مکانیک کوانتوم را توسعه دهیم و یا در زمینه بررسی رفتار اتم‌ ها پیش رفت هایی چشمگیر داشته باشیم. ما امروزه توانسته‌ ایم ذرات به اصطلاح مجازی را کشف کنیم. ذراتی که نمی ‌توانیم به طور مستقیم ببینیم، با این حال به وسیله شواهد و قوانین فیزیکی وجود آنها را پیش ‌بینی می ‌کنیم.

این موضوع که جهان در حال انبساط است به عنوان یک نقطه شروع در علم ما جای می گیرد و اگر با ما تکیه بر دانسته ها و اکتشافات جدید خود و همچنین استنتاج حوادث پیرامون مان پیش برویم خواهیم توانست به نقطه ای بسیار دور در تاریخ گذشته هستی برسیم. به زمانی که تمام عالم هستی در نقطه ای قابل رویت جمع شده بود.

در یک لحظه، که اکنون آن را  لحظه‌ ی انفجار بزرگ (Big Bang)  می نامیم ، قوانین فیزیکی فعلی شناخته شده از هم فرو‌پاشید، چون بین نسبیت عام و مکانیک کوانتوم ناسازگاری به وجود آمد. نسبیت عام به توصیف گرانش می ‌پردازد و مکانیک کوانتوم نیز فیزیک ذرات میکروسکوپی است. اما خیلی از دانشمندان این ناسازگاری را یک محدودیت جدی برای علم نمی ‌دانند، چون ما انتظار داریم که اصل نسبیت عام بعد از تصحیح، به بخشی از تئوری کوانتوم پیوسته تبدیل شود. نظریه‌ ی ریسمان نمونه ‌ای از این تلاش ‌ها است.

how-much-more-can-we-learn-about-the-universe3

با تصور چنین نظریه ‌ای، شاید قادر باشیم به این سوال پاسخ دهیم که قبل از انفجار بزرگ چه اتفاقی رخ داده است. البته این موضوع نیز قابل تامل است که شاید پیش از انفجار بزرگ اصلا هیچ چیزی وجود نداشته باشد. ساده ‌ترین پاسخ مطرح شده در مورد انفجار بزرگ، کمترین میزان مقبولیت را در بین دانشمندان داشته است. پاسخ به این شکل است که در لحظه‌ ی انفجار بزرگ نسبیت عام با نسبیت خاص به هم پیوستند تا یک حقیقت واحد را تشکیل دهند: فضازمان. اگر فضا توسط انفجار بزرگ به وجود آمده باشد، شاید زمان هم به همین ترتیب به وجود آمده باشد. در آن صورت، هیچ “’گذشته‌ای” وجود نداشته است و سوال مطرح شده بی مورد خواهد بود. بنابراین و با توجه به این موضوع باید منتظر یک جواب منطبق بر کوانتوم گرانشی باشیم و پس از اثبات آن فرضیه به شکل آزمایشگاهی خواهیم توانست خواهیم توانست پاسخی جدید و قابل اتکا ارائه دهیم.

درادامه با یک سوال دیگر مواجه هستیم و آن این است که مرزهای کیهان ما درکجا قرار دارد؟ گستردگی جهان ما تا کجا ادامه دارد؟ در واقع باید گفت پاسخ این سوالات نیز هنوز برای بشر مبهم است و برای پاسخ به آن تنها به حدس و گمان هایی ساده اکتفا نموده ایم که آن را با شما درمیان می گذاریم.

همانطور که گفتیم فضا و زمان به صورت خود به خودی و به یکباره در اثر انفجار بزرگ پدید آمده اند پس می توان گفت که انرژی کلی آن ها برابر صفر است. بر اساس اصول پایه ای فیزیک می توان گفت که انرژی موجود در غالب یک جرم با انرژی میدان گرانشی آن برابر است. به زبان ساده تر باید بگوییم مجموع مقادیر چیزی که از هیچ پدید آمده است باید همان هیچ باشد. با توجه به علم فعلی ما تنها جهانی قادر به دارا بودن چینی ویژگی هایی است که شکل هندسی آن گرد باشد. به عنوان مثال وقتی بر روی یک کره حرکت می کنیم با هیچ مرزی مواجه نخواهیم شد اما می دانیم که محدودیت هایی برای آن وجود دارد. همین شرایط می ‌تواند در جهان هم صادق باشد. اگر ما به انداز‌ه‌ ی کافی در یک جهت به دوردست نگاه کنیم، می‌ توانیم قسمت پشت سر خود را ببینیم.

how-much-more-can-we-learn-about-the-universe4

اما در عمل ما قادر به انجام چنین کاری نیستیم  و دلیل آن احتمالا می تواند این موضوع باشد که جهان قابل رویت ما خود بخشی از جهان بزرگتریست که ما توانایی دیدن آن را نداریم. علت این امر باید با آنچه که انبساط جهان (inflation) نامیده می ‌شود در ارتباط باشد. بیشتر جهان‌هایی که خود به خود از انداز‌ه‌ی میکروسکوپی به وجود می ‌آیند، به جای آن که برای میلیاردها سال عمر کنند، در یک زمان میکروسکوپیک از هم فرو می ‌پاشند. اما در بعضی موارد،  انرژی دادن به فضای خالی باعث می ‌شود که جهان در یک بازه‌ ی زمانی کوتاه به صورت تصاعدی متورم شود. بر این اساس تصور ما این است که در لحظات اولیه ی پس از انفجار بزرگ یک بازه زمانی پدید آمده است که در آن جهان انبساط می یابد و به این طریق جهان بلافاصله پس از تولد فرو نپاشیده است.

بنابراین می توانیم بگوییم که ممکن است زمانی انبساط در بخشی از جهان که ما در آن حضور داریم متوقف شود اما به این معنا نیست که تمام جهان از انبساط  خارج شده است.

 

منبع NAUTIL

ردیابی سرنوشت ستاره بلعیده شده توسط سیاه چاله ادامه دارد

مدتی پیش اختر شناسان متوجه شدند که یک ستاره توسط یک سیاه چاله بلعیده شده است. البته این موضوع به راحتی گفتن آن نیست از این رو، درست از همان موقع تلسکوپی به وسعت زمین  سرنوشت نهایی ستاره ای که توسط یک ابرسیاه چاله بلعیده شده است را ردیابی می کند.

یکی از نتایج این واقعه این است که برخی از مواد تشکیل دهنده ی ستاره از آن جدا شده و در اطراف سیاه چاله انباشته می شوند و سپس این ذرات در اشعه های بسیار باریکی با سرعت فوق العاده بالایی که نزدیک به سرعت نور است شلیک می شوند.

ستاره شناسان رادیویی  از شبکه تلسکوپ رادیو ای به وسعت کره زمین جهت مشاهده نزدیک یک واقعه بسیار خاص در کهکشانی دوردست استفاده کرده اند.  این پدیده در واقع نوری با نام (jet) بود که توسط ستاره ای که در حال بلعیده شدن به درون یک ابر سیاه چاله بود بوجود آمده بود. مشاهدات منبع انتشار بسیار فشرده و در کمال تعجب بسیار کم سرعتی از امواج رادیویی را نمایان کردند.

تیم بین المللی اخترشناسان رادیویی به سرپرستی ژون یانگ در رصد خانه اونسالا دانشگاه علم و فناوری چالمرز در سوئد با استفاده از شبکه اروپایی VLBI (EVN) که تسلکوپی رادیویی به وسعت و بردی به اندازه کره زمین دارد، بر روی جتی تازه یافت شده در منشا Swift J1644+57 مطالعاتی انجام داده اند.

ستاره و سیاه چاله

هنگامی که ستاره ای به یک ابرسیاه چاله نزدیک می شود، دچار اختلال شدیدی می شود. تقریبا نیمی از گاز های موجود در آن ستاره به سمت سیاه چاله کشیده می شوند و یک دیسک به دور آن می سازند. در طی این فرآیند مقادیر بسیار زیادی از انرژی جاذبه ای به تشعشعات الکترومغناطیسی تبدیل می شوند و منشاء نوری بسیار درخشانی تولید می کنند که در طول موج های گوناگون قابل مشاهده است.

یکی از عواقب مشهود این فرآیند این است که  برخی از مواد سازنده ستاره که از آن جدا شده و در پیرامون سیاهچاله انباشته می شوند، ممکن است به صورت پرتو های ذره ای بسیار باریک با سرعتی نزدیک به سرعت نور شلیک شوند. این پرتو ها که به اصطلاح جت های نسبیتی نامیده می شوند در طول موج های رادیویی از خود تابش های قدرتمندی ساتع می کنند.

نمونه اول از این اختلالات موجی که منجر به شکل گیری جت نسبیتی شد در سال ۲۰۱۱ توسط ماهواره Swift ناسا رویت شد. در واقع جت نخست به شکل نور های درخشان در اشعه ی X خود را نشان داد و به آن نام Swift J1644+57 را اختصاص دادند. منشا آن نیز به یک کهکشان بسیار دوردست بر می گشت به طوری که ۳٫۹ بیلیون سال زمان طول کشید تا نور حاصل از آن به زمین برسد.

یانگ و همکاران اش توانستند با استفاده از تکنیک تداخل بنیادی بسیار طولانی یا به اختصار (VLBI) محاسبات بسیار دقیقی از این جت بدست آورند.

جون یانگ گفته است ” با استفاده از شبکه تلسکوپی EVN ما توانستیم محل جت را با دقت ۱۰ میکروآرک در ثانیه محاسبه کنیم. این محاسبات از جمله دقیق ترین محاسبات انجام شده توسط تلسکوپ های رادیویی تا به امروز هستند.”

با کمک دقت بسیار بالای محاسبات انجام شده به وسیله شبکه تلسکوپ های رادیویی، حتی با وجود فاصله بسیار زیاد دانشمندان توانستند در جت به دنبال نشانه های حرکتی بگردند.

جون یانگ گفته است که ” ما به دنبال حرکات ابرنوری که سرعتی نزدیک به سرعت نور دارند گشته ایم. طی مشاهدات سه ساله ما حرکات این چنینی در صورت وجود به قطع مشاهده می شدند. اما تصاویر ما تابش بسیار فشرده و ثابتی را نشان می دهد اما هیچ حرکت قابل مشاهده ای در دیده نمی شود.”

نتایج این تحقیقات بینش های مهمی از وقایع پس از نابودی یک ستاره توسط ابر سیاهچاله به دست می دهد و همچنین اطلاعاتی از نحوه رفتار جت ها در محیط های جدید رو می کند.

زولت پاراگی که عضوی از انستیتیو Joint VLBI ERIC (JIVE) در دوینگلو، هلند و عضوی از تیم تحقیقاتی می باشد دلیل فشرده و ثابت بودن جت ها را توضیح می دهد ” مواد شلیک شده نسبی که به تازگی شکل گرفته اند هنگام برخورد با محیط های بین ستاره ای سریعا سرعت شان را از دست می دهند. همچنین، مطالعات پیشین حاکی از این دارند که ما جت را تنها در زاویه ای کوچک می بینیم. این قضیه می تواند دلیل فشرده بودن آن ها را توضیح دهد”

Swift J1644+57  یکی از نخستین اختلالات موجی (Tidal Disruption) مورد مطالعه است و قطعا پس از آن موارد بیشتری نیز تحت بررسی قرار می گیرند.

استفانی کوموسا از انستیتو ماکس پلانک اخترشناسی رادیویی در بون، آلمان گفته است که ” مشاهدات صورت گرفته به کمک نسل جدید تلسکوپ های رادیویی اطلاعات بیشتری از وقایع پس از بلعیده شدن یک ستاره توسط سیاه چاله می دهد. هم چنین در خصوص اینکه جت های قدرتمند چگونه درست در کنار سیاه چاله ها شکل و تکامل پیدا می کنند نیز اطلاعاتی حاصل شده است”.

هم چنین یانگ اظهار داشت ” در آینده، تلسکوپ های رادیویی عظیمی همچون تلسکوپ دارای روزنه کرودی ۵۰۰ متری (FAST) و تلسکوپ آرایش کیلومتر مربعی (SKA) امکان انجام مشاهدات گسترده تر جزیی تر این پدیده های فوق العاده را به ما خواهند داد”.

منبع: astronomy

تغییرات عجیب بخش خارجی منظومه شمسی همچنان ادامه دارد

اشیای فضایی جدید؟ سیارات پنهان؟ بخش دیده نشده ی منظومه شمسی

چندین شی دیده جدید در حومه ی منظومه شمسی یافت شده اند که دال بر این مسئله دارند که چیز های عجیبی در نزدیکی مان در حال کشف شدن است. در حالی که برخی از دانشمندان بر این عقیده هستند که شئ های فضایی جدید که کشف شده اند مدرکی بر وجود سیاره فرضی نهم (البته این سیاره هنوز کشف نشده است ولی نام SuperEarth بر آن نهاده شده و گمان می رود در حومه منظومه شمسی وجود دارد) هستند اما همه این باور را قبول ندارند.

اعضای جدید منظومه ما شامل یک سیاره یخ زده که طولانی ترین گردش به دور خورشید را داراست و چندین شئ دیگر که در فاصله بسیار دور از خورشید در کنار یکدیگر جمع شده اند.

جدید ترین عضو این شئ های یافت شده L91 نام دارد، یک سیاره ی کاملا یخ زده که در مداری از خورشید به فاصله ۱۴۳۰ واحد اخترشناسی (AU) و یا به عبارتی ۱,۴۳۰ برابر فاصله زمین تا خورشید، گردش می کند که این خود یکی از طولانی ترین دوره های گردش به دور خورشید تا به امروز است. L91 هرگز بیش از ۵۰ AU به خورشید نزدیکتر نمی شود که این رقم از پلوتو هم دور تر است.

مسیر طولانی L91 نیز در حال تغییر است.

solar system

متخصص فیزیک نجومی میشل بنیستر در نشست  بخش مجمع اخترشناسی آمریکا در خصوص دانش های سیاره ای که در شهر پسدینا کالیفرنیا برگذار شد به دانشمندان اذعان داشت ” محور گردش این سیاره به طور خارق العاده ای در حال تغییر است” خانم بنیستر، که یک متخصص فیزیک نجومی فارق التحصیل دانشگاه کویین بلفاست است متوجه تغییرات  جزیی در مدار این شئ شد که این احتمالا ناشی از نیرو ی جاذبه ی ستاره های در حال حرکت و یا تعامل آن با سیاره فرضی نهم بوده است. طی شبیه سازی های انجام شده توسط دانشمندان احتمال بر این می رود که حرکات این شئ منشا خارج منظومه شمسی دارند، حال چه از ستاره های دوردست و یا باد های کهکشانی حاصل شده اند.

کنستانتین باتیگین، اختر شناسی در انستیتو تکنولوژی کالیفرنیا می گوید ” به نظر من این قضیه غیر محتمل نیست ولی به آن نیازی هم نداریم” او ماه ژانویه سال گذشته وجود سیاره نهم را اعلام کرد و بر این باور است که حرکت مداری عجیب L91 و دیگر شئ های فضایی تازه کشف شده را می توان توسط سیاره ی فرضی نهم توجیه کرد.

بنیستر و تیم اش طی Outer Solar System Origins Survey (بررسی ریشه های خارج از منظومه شمسی) که یک برنامه ۴ ساله با هدف پیدا کردن اشیائ فضای دوردست توسط تلسکوپ کانادایی-فرانسوی و هاوایی است موفق به کشف L91 شدند. جرم و سایز این سیاره هنوز در هاله ای از ابهام به سر می برد.

اتفاقی در حال روی دادن است

L91 تنها شئ آسمانی نیست. تیم دیگری از اخترشناسان تعدادی شئ  یخی دیگر در که ورای نپتون در حرکت هستند را نیز گزارش کردند. تشابه نوع مدار این شئ های فضایی منجر به ایجاد نظریه سیاره نهم شده است.

اسکات شپرد از انستیتو کارنگی علوم واشنگتن می گوید: “اتفاقات زیادی در دوردست های منظومه شمسی در حال روی دادن است” شپرد عضوی از تیمی است که در حال انجام بزرگترین و عمیق ترین بررسی اجزای فرا نپتونی که مدار شان آن ها به دور تر از نپتون می کشد هستند.

Strange changes in the outer solar system

یکی از شئ هایی که این تیم موفق به یافتن آن شدند، ۲۰۱۴ FE72 است که یکی از اولین شئ های فضاییست که از درون ابر ،Oort ، پوشش یخی که حول منظومه ما را پوشانده است، بیرون آمده است. این سیارک دارای مداری ۳,۰۰۰ AU است و هم چنین ممکن است تحت تاثیر نیرو ی جاذبه ستاره هایی که در مجاور آن حرکت می کنند قرار بگیرد.

اما همه دانشمندان بر سر اینکه افزایش تعداد مدار های عجیب دال بر وجود سیاره نهم دارد اتفاق نظر ندارند.

کاترین ولک می گوید : “ما بخش هایی از فضا را بیشتر و با دقت بیشتر بررسی کرده ایم” ولک، یک دانشمند سیاره شناس در دانشگاه آریزونا است.

او به تشابهات مدار ها و نحوه قرارگیری اشیائ فضایی اشاره کرده است و گفته است که این امر ممکن است به دلیل مکان قرارگیری مشابه شان در فضا باشد.

در یک کنفرانس مشابه، باتیگین اعلام کرد که ممکن است سیاره نهم مسئول حرکت عقب رو و یا پس رفتن مدار برخی از سنتوار های منظومه باشد. هنگام گردش به دور سیارات دوردست، سنتوار ها ممکن است در مسیر مدار همزاد های بزرگتر خویش قرار بگیرند. از این رو ممکن است قرار گیری برخی سیارک ها در مدار سیاره ۹ منجر به تغییر مدار آن ها شده باشد، همانطور که الیزابت بیلی، فارغ التحصیل دانشگاه کالتک و یکی از همکاران باتیگین بر آن اذعان داشت.

اما همچنان ولک باور دارد که تحقیقات کنونی مدرکی بر وجود سیاره نهم نیستند حتی با اینکه نتایج موجود بسیار منطقی به نظر می رسند.

او گفته است که ” این اشیاء همگی باهم متفاوت و در نوع خود عجیب اند، هیچ مدرکی به اندازه کافی مرا قانع نمی کند که با واقع یک سیاره دیگر در فضا وجود دارد، اما حقیقت این است که اتفاقات چندی در حال روی دادن است که این احتمال می دهند که در منظومه ما خبر هایی است!”

منبع: astronomy

رویداد های آسمان در دهه پایانی ماه اکتوبر ۲۰۱۶

بیشتر افرادی که به رویدادهای آسمانی علاقه دارند و آن  ها را در تصمیم های خود دخیل می کنند، به ریز جزییات رخدادهای آسمان دقت دارند. اختر شناسان راهی باز کرده اند تا مردم بتوانند به راحتی بفهمند که در آن بالا یعنی آسمان چه خبر است. اگر ادوات رصد کردن آسمان در دست دارید، گاهی می توانید شاهد رویدادهایی باشید که اجرام آسمانی را در تقابل هم قرار می دهند و با دیدن این صحنه ها حسابی لذت ببرید.  گویا آی تی امروز به بررسی رویدادهای پایانی ماه اکتوبر خواهد پرداخت. با ما همراه باشید.

اخبار نجوم

ماه و مرکز صورت فلکی شیر – ۲۵ و ۲۶ اکتبر

در ساعات قبل از طلوع خورشید، رو به مشرق حلال نازک ماه را در زیر ستاره ی درخشان رگولوس تماشا کنید، که مرکز  صورت فلکی لئو (شیر)  را نشان می دهد. دو شئ نورانی تنها در چند درجه اندک از هم فاصله خواهند داشت، تنها کمی بیشتر از عرض انگشت شستتان که در فاصله طول دست تان قرار دارد. تقابل ماه با سیاره های اطراف همیشه جذاب هستند و موضوع مهمی برای رصد کنندگان آسمان به شمار می آیند.

رویداد های آسمان

مشتری و ماه- ۲۸ اکتبر

و باری دیگر ماه به یک سیاره ی دیگر می رسد اما این بار این سیاره بزرگترین سیاره ی منظومه ی شمسی و یکی از درخشان ترین سیارات آسمان تاریک شب است.

ماه و مشتری منظره ای خیره کننده تولید می کنند که حتی چشم غیر مسلح هم از دیدن آن ها لذت خواهد برد و این فرصت عکس برداری بسیار خوبی در مقابل طلوع درخشنده ی شرقیست.

زحل و ناهید- ۳۰ اکتبر

درست هنگام گرگ و میش عصر در آسمان های جنوب غربی به دنبال ناهید و زحل بگردید تا شاهد جفت شدن آن ها در صحنه ای خارق العاده باشید. این صحنه بسیار زیباست و فرصتی است که عکاس های آماتور، و حتی حرفه ای، از آن برای تکمیل آلبوم های خود استفاده کنند. چیزی که جالب است رنگ نارنجی است که در این تقابل به چشم می آید.

در رویداد مذکور در میان زحل و ناهید ستاره ای نارنجی با نام آنتاراس قرار دارد، که چشم صورت فلکی اسکورپیوس (عقرب) است. با استفاده از دوربین دو چشم می توان جفت شدن این دو سیاره را به زیبایی دید اما با کمک یک تلسکوپ می توان حلقه ی دور زحل و دیسک دور ناهید را نیز رصد کرد.

اگر توانستید این رویداد ها را دنبال کنید، تصاویری از آنچه در ابزارهای خود می بینید تهیه کنید و برای ما ارسال کنید.

نقشه برداری جدید فضایی خبر از ناگفته های منظومه شمسی می دهد

منجمان و محققان بسیاری در حال تلاش برای دستیابی به اطلاعات هرچه دقیق تر از منظومه شمسی و کهکشان راه شیری هستند تا بیش از پیش بتوانند محیط اطرافمان را شناسایی نمایند. در این راستا نقشه های بسیاری از منظومه شمسی تهیه شده است که می تواند تا حدودی وضعیت فعلی سیارمه مان در این منظومه را بیان نماید اما به تازگی محققان قادر به تهیه یک نقشه بسیار کامل و بی نقص شده اند که تقریبا کامل ترین نقشه ترسیم شده از منظومه شمسی تا کنون است.

دستاورد جدید اختر شناسان مرکز تحقیقات فضایی HI4PI با جزئیات فوق العاده، تمامی نقشه های موجود فعلی را از دور خارج کرده است. محققین این مرکز توانستند با استفاده از فراوان ترین ماده در هستی، یعنی اتم هیدروژن خنثی، موفق به تهیه این محتوای بی نظیر شوند.

البته این نکته شایان توجه است که چنین تحقیقاتی پیش از این در ابعاد بسیار کوچکتری صورت گرفته بود اما این بار با استفاده از حدود ۱۰ میلیارد نقطه داده که به وسیله رادیوتلسکوپ های عظیم از جمله رصدخانه پارکس در استرالیا و افلسبرگ در آلمان بدست آمده است  و همچنین با استفاده از الگوریتم های فیلتر نویز توسط این پژوهشگرانمی توان گفت تصویری با حساسیت دوبرابری نسبت به بهترین نتایج قبلی بدست آمده است.

milky-way-galaxy-hi4pi-icrar

وضوح فضایی این نقشه جدید، چهار برابر بیشتر ازسایر نقشه های موجود است و در نتیجه، می توانید نمایی بی نهایت جامع از کهکشان راه شیری را ملاحظه نموده، ضمن اینکه جزئیات دقیقی از ساختارهای ابری بین ستاره ای را نیز مشاهده نمایید، چیزی که پیش از این دیده نمی شد.

لازم به ذکر است که این نقشه تنها هب منظور به تصویر کشیدن وضعیت همسایگی انسان در فضا مورد استفاده قرار نمی گیرد و برای تشخیص و درک نحوه توسعه کهکشان راه شیری نیز موثر خواهد بود . زیرا در میلیارد ها سال قبل احتمالاً ساختارهای ابری در تشکیل ستاره های کهکشان ما نقش داشته اند، در نتیجه بهره گیری از این ابزار خواهد توانست راهگشای حل این مسائل نیز باشد.

به بهره گیری از نتایج این پژوهش، می توان به شناخت وسیعتری از مابقی جهان هستی نیز دست یافت. از آنجا که هر آنچه می بینیم از میان همین هیدروژن می گذرد، بنابراین کسب اطلاع از تراکم این عنصر می تواند به دانشمندان در تصحیح یافته هایشان کمک شایانی نماید، گویی قبلاً از میان پنجره ای غبار گرفته به دوردست ها می نگریستند و اکنون این پنجره کاملاً تمیز و شفاف شده.

با توجه به انتشار رایگان تمامی این اطلاعات بدست آمده به طور وسیع در سراسر جهان انتظار می رود به زودی شاهد کشفیات جدید محققان سراسر دنیا در این زمینه باشیم.

نظرات و دیدگاه های خود را درباره این مطلب جذاب و خواندنی با دیگر کاربران مجله اینترنتی گویا آی تی در میان بگذارید.

منبع:

engadget

آیا از تفاوت های زمین با سیاره های هم اندازه اش چیزی می دانید ؟

چرا نباید به این زودی سیارات خارجی را “زمین مانند” بنامیم؟

هر زمان که اخترشناسان سیاره ی دیگری پیدا می کنند اولین سوالی که در ذهن همه ی ما پدید می آید این است که “آیا این سیاره شبیه به زمین است؟” پیدا کردن سیاره ای مشابه زمین به ندرت شانس پیدا کردن حیات مشابه سیاره خودمان را بیشتر و بیشتر می کند و ممکن است نهایتا مدرکی بر این باشد که ما در این جهان عظیم تاریک و سرد تنها نیستیم.

اما، هنگامی که سیاره ها “مشابه زمین” خطاب می شوند، ما نباید به سرعت نتیجه گیری کنیم. با ابزار های امروزی،  پیدا کردن سیارات دوردست خود کاری بسیار دشوار است ( با اینکه امروزه این فرآیند بسیار آسان تر شده است)، دیگر حرفی از دشواری فهمیدن اینکه آیا در آن سیارات هم درخت و اقیانوس و دشت و صحرا نیز وجود دارد نخواهیم زد! علاوه بر این، اصلا “مشابه زمین” بودن به چه معناست؟ آیا تنها به این معناست که سیاره در ناحیه شمسی قابل سکونت قرار گرفته باشد؟ یا اینکه در سطح اش آب مایع وجود داشته باشد و اتمسفر آن نیز مشابه زمین و شاید هم تغییرات آب و هوایی شدید مشابه زمین داشته باشد؟

whats-the-difference-between-earth-mass-and-earth-like2

زیاد هم به دلتان صابون نزنید!

قطعا پاسخ این سوالات به این زودی ها داده نخواهد شد، زیرا به این زودی ما قادر به تشخیص بسیاری از این موارد نخواهیم بود. در حالی که امروزه دانشمندان در حال کار بر روی تشعشعات ستاره ای که از از جو سیارات عبور می کنند هستند تا از طریق آن ها نوع گاز های موجود در آن سیاره را تشخیص دهند ولی این تا مدتی طولانی این دقیق ترین کاریست که ما قادر به انجام آن خواهیم بود. اگر ماموریت Starshot موفقیت آمیز باشد، تاکید می کنیم که “اگر” موفقیت آمیز باشد و به منظومه ی Alpha Centauri برسد ممکن است به درک بهتری در این زمینه برسیم اما آمادگی برای این ماموریت خود دهه ها طول خواهد کشید. از این رو، هم اکنون بهتر از سیاره ها را “مشابه زمین” ننامیم. متاسفانه، ما واقعا هیچ راهی برای دانستن اینکه آن سیارات دقیقا تا چه حد مشابه زمین ما هستند در دست نداریم.

در حال حاضر دانش ما تنها محدود به رصد های عینی از سیارات خارج از منظومه ی شمسی ما می شود و حتی رصد آن ها نیز کاری دشوار است. سه مشخصه ی مهم که تا حدی هم برایمان قابل اتکا هستند و ما نیز قادر به دریافت آن ها هستیم جرم سیاره، دوره ی چرخش آن و فاصله محور چرخش آن با ستاره منظومه ای که در آن قرار دارد هستند. این ها ممکن است در برابر اطلاعات پر جزیاتی که ما از مریخ و یا ناهید بدست آورده ایم بسیار ناچیز به نظر برسند ولی اختر شناسان تنها با دانستن اندازه و فاصله ی یک سیاره نیز می توانند اطلاعات بسیار مهمی از آن بدست آورند.

whats-the-difference-between-earth-mass-and-earth-like2

چگونه چیز هایی که اکنون می دانیم را فهمیده ایم؟

برای تعیین جرم یک سیاره ی خارجی، اختر شناسان عموما به ستاره ای که سیاره حول آن گردش می کند نگاه می کنند و حرکات جلو و عقب رو ناشی از گرانش سیاره را محاسبه می کنند. باید به خاطر داشته باشیم که جرم و اندازه دو معیار کاملا متفاوت اند و ما در حال حاضر هیچ روش درستی برای محاسبه ی اندازه سیاره در دست نداریم. نهایت کاری که از دست ما بر می آید  تخمین اندازه بر اساس جرم بدست آمده سیاره می باشد. برای فهمیدن سرعت حرکت سیارات تنها کاری که اختر شناسان موظف به انجام آن هستند این است که منتظر کم نور شدن ستاره، هنگامی که سیاره از جلو آن عبور می کند باشند. با ترکیب این اطلاعات به علاوه جرم ستاره می توان فاصله تخمینی سیاره خارجی را محاسبه کرد و فهمید که آیا سیاره در فاصله قابل سکونتی از ستاره قرار گرفته است یا خیر.

محدوده حلقه ای حول یک ستاره ناحیه قابل حیات آن است که در آنجا دما اجازه وجود آب مایع را می دهد و در حال حاضر همین مسئله بزرگترین آزمایشی است که اختر شناسان می توانند برای شناسایی امکان وجود حیات در یک سیاره انجام دهند. اگر سیاره ای از این حلقه بیرون باشد شانس یافت شدن حیات در آن اساسا صفر خواهد بود.

whats-the-difference-between-earth-mass-and-earth-like2

در حالی که بودن در ناحیه قابل حیات اولین شرط “مشابه زمین” بودن یک سیاره خارجی است اما قطعا تنها شرط آن نیست. تنها به این دلیل که امکان وجود آب مایع در آنجا وجود دارد بدین معنا نیست که قطعا در آنجا آب مایع یافت خواهد شد. ممکن است سیاره مملو از مواد سمی و شاید کاملا هم یک زمین مرده باشد. ممکن است هسته ی آن، همان چیزی که  نیرو ی مغناطیسی سیاره ما را که عامل عدم ورود تشعشعات رادیواکتیو به جو است را به وجود می آورد، مرده باشد و یا شاید حتی اتمسفر خود را از دست داده باشد. ممکن است توسط تشعشعات قوی ستاره اش نابود و یا توسط شهاب سنگ ها تخریب شده باشد. منظور ما این است که دلایل بسیار زیادی برای غیر قابل حیات بودن سیاره های قابل سکونت احتمالی وجود دارند و روش های رصد کردن ما برای بررسی بسیاری از این دلایل به اندازه ی کافی پیشرفته نیستند. “مشابه زمین” خطاب کردن سیاره های خارجی در حال حاضر کمی زود قضاوت کردن است.

تعداد بسیار زیادی سیاره خارجی در این جهان وجود دارد و ما نیز تعداد بسیار دیگری را پیدا خواهیم کرد. دلیلی بر عدم پیدا کردن سیاره ای مشابه زمین در آینده وجود ندارد. ما تنها بایست تا آن زمان شکیبا باشیم.

نظرات و دیدگاه های خود را درباره این مطلب کاربردی و مفید با دیگر کاربران گویا آی تی در میان بگذارید و همچنین با اشتراک گذاری آن در شبکه های اجتماعی آن را به دیگران نیز آموزش دهید.

منبع: astronomy

آیا از تفاوت های زمین با سیاره های هم اندازه اش چیزی می دانید ؟

چرا نباید به این زودی سیارات خارجی را “زمین مانند” بنامیم؟

هر زمان که اخترشناسان سیاره ی دیگری پیدا می کنند اولین سوالی که در ذهن همه ی ما پدید می آید این است که “آیا این سیاره شبیه به زمین است؟” پیدا کردن سیاره ای مشابه زمین به ندرت شانس پیدا کردن حیات مشابه سیاره خودمان را بیشتر و بیشتر می کند و ممکن است نهایتا مدرکی بر این باشد که ما در این جهان عظیم تاریک و سرد تنها نیستیم.

اما، هنگامی که سیاره ها “مشابه زمین” خطاب می شوند، ما نباید به سرعت نتیجه گیری کنیم. با ابزار های امروزی،  پیدا کردن سیارات دوردست خود کاری بسیار دشوار است ( با اینکه امروزه این فرآیند بسیار آسان تر شده است)، دیگر حرفی از دشواری فهمیدن اینکه آیا در آن سیارات هم درخت و اقیانوس و دشت و صحرا نیز وجود دارد نخواهیم زد! علاوه بر این، اصلا “مشابه زمین” بودن به چه معناست؟ آیا تنها به این معناست که سیاره در ناحیه شمسی قابل سکونت قرار گرفته باشد؟ یا اینکه در سطح اش آب مایع وجود داشته باشد و اتمسفر آن نیز مشابه زمین و شاید هم تغییرات آب و هوایی شدید مشابه زمین داشته باشد؟

whats-the-difference-between-earth-mass-and-earth-like2

زیاد هم به دلتان صابون نزنید!

قطعا پاسخ این سوالات به این زودی ها داده نخواهد شد، زیرا به این زودی ما قادر به تشخیص بسیاری از این موارد نخواهیم بود. در حالی که امروزه دانشمندان در حال کار بر روی تشعشعات ستاره ای که از از جو سیارات عبور می کنند هستند تا از طریق آن ها نوع گاز های موجود در آن سیاره را تشخیص دهند ولی این تا مدتی طولانی این دقیق ترین کاریست که ما قادر به انجام آن خواهیم بود. اگر ماموریت Starshot موفقیت آمیز باشد، تاکید می کنیم که “اگر” موفقیت آمیز باشد و به منظومه ی Alpha Centauri برسد ممکن است به درک بهتری در این زمینه برسیم اما آمادگی برای این ماموریت خود دهه ها طول خواهد کشید. از این رو، هم اکنون بهتر از سیاره ها را “مشابه زمین” ننامیم. متاسفانه، ما واقعا هیچ راهی برای دانستن اینکه آن سیارات دقیقا تا چه حد مشابه زمین ما هستند در دست نداریم.

در حال حاضر دانش ما تنها محدود به رصد های عینی از سیارات خارج از منظومه ی شمسی ما می شود و حتی رصد آن ها نیز کاری دشوار است. سه مشخصه ی مهم که تا حدی هم برایمان قابل اتکا هستند و ما نیز قادر به دریافت آن ها هستیم جرم سیاره، دوره ی چرخش آن و فاصله محور چرخش آن با ستاره منظومه ای که در آن قرار دارد هستند. این ها ممکن است در برابر اطلاعات پر جزیاتی که ما از مریخ و یا ناهید بدست آورده ایم بسیار ناچیز به نظر برسند ولی اختر شناسان تنها با دانستن اندازه و فاصله ی یک سیاره نیز می توانند اطلاعات بسیار مهمی از آن بدست آورند.

whats-the-difference-between-earth-mass-and-earth-like2

چگونه چیز هایی که اکنون می دانیم را فهمیده ایم؟

برای تعیین جرم یک سیاره ی خارجی، اختر شناسان عموما به ستاره ای که سیاره حول آن گردش می کند نگاه می کنند و حرکات جلو و عقب رو ناشی از گرانش سیاره را محاسبه می کنند. باید به خاطر داشته باشیم که جرم و اندازه دو معیار کاملا متفاوت اند و ما در حال حاضر هیچ روش درستی برای محاسبه ی اندازه سیاره در دست نداریم. نهایت کاری که از دست ما بر می آید  تخمین اندازه بر اساس جرم بدست آمده سیاره می باشد. برای فهمیدن سرعت حرکت سیارات تنها کاری که اختر شناسان موظف به انجام آن هستند این است که منتظر کم نور شدن ستاره، هنگامی که سیاره از جلو آن عبور می کند باشند. با ترکیب این اطلاعات به علاوه جرم ستاره می توان فاصله تخمینی سیاره خارجی را محاسبه کرد و فهمید که آیا سیاره در فاصله قابل سکونتی از ستاره قرار گرفته است یا خیر.

محدوده حلقه ای حول یک ستاره ناحیه قابل حیات آن است که در آنجا دما اجازه وجود آب مایع را می دهد و در حال حاضر همین مسئله بزرگترین آزمایشی است که اختر شناسان می توانند برای شناسایی امکان وجود حیات در یک سیاره انجام دهند. اگر سیاره ای از این حلقه بیرون باشد شانس یافت شدن حیات در آن اساسا صفر خواهد بود.

whats-the-difference-between-earth-mass-and-earth-like2

در حالی که بودن در ناحیه قابل حیات اولین شرط “مشابه زمین” بودن یک سیاره خارجی است اما قطعا تنها شرط آن نیست. تنها به این دلیل که امکان وجود آب مایع در آنجا وجود دارد بدین معنا نیست که قطعا در آنجا آب مایع یافت خواهد شد. ممکن است سیاره مملو از مواد سمی و شاید کاملا هم یک زمین مرده باشد. ممکن است هسته ی آن، همان چیزی که  نیرو ی مغناطیسی سیاره ما را که عامل عدم ورود تشعشعات رادیواکتیو به جو است را به وجود می آورد، مرده باشد و یا شاید حتی اتمسفر خود را از دست داده باشد. ممکن است توسط تشعشعات قوی ستاره اش نابود و یا توسط شهاب سنگ ها تخریب شده باشد. منظور ما این است که دلایل بسیار زیادی برای غیر قابل حیات بودن سیاره های قابل سکونت احتمالی وجود دارند و روش های رصد کردن ما برای بررسی بسیاری از این دلایل به اندازه ی کافی پیشرفته نیستند. “مشابه زمین” خطاب کردن سیاره های خارجی در حال حاضر کمی زود قضاوت کردن است.

تعداد بسیار زیادی سیاره خارجی در این جهان وجود دارد و ما نیز تعداد بسیار دیگری را پیدا خواهیم کرد. دلیلی بر عدم پیدا کردن سیاره ای مشابه زمین در آینده وجود ندارد. ما تنها بایست تا آن زمان شکیبا باشیم.

نظرات و دیدگاه های خود را درباره این مطلب کاربردی و مفید با دیگر کاربران گویا آی تی در میان بگذارید و همچنین با اشتراک گذاری آن در شبکه های اجتماعی آن را به دیگران نیز آموزش دهید.

منبع: astronomy

اولین گوی ساخته شده با الهام از سیاره پلوتو معرفی شد

واکشا ویس- انتشارات کالم بچ، و ناشر مجله اختر شناسی و مجله Discover، ساخت اولین  گوی پلوتو در تاریخ را که با استفاده از داده های تاریخی بدست آمده از ماموریت افق های نو در سال ۲۰۱۵ ساخته شده است، را با افتخار اعلام می کند.

دیوید جی. ایچر، سردبیر مجله اخترشناسی  می گوید “این اولین نسخه تولیدی در کل تاریخ است، تقریبا یک سال پیش ما از اینکه سطح پلوتو به چه شکل است هیچ گونه اطلاعاتی نداشتیم، اما اکنون کره ی پر جزییاتی در دست داریم که ۶۵ مشخصه ی علامت گذاری شده بر روی این سیاره ی دور و دراز و دوست داشتنی را به ما نشان می دهد. دوست قدیمی بنده کلاید تامباو بسیار شگفت زده و مفتخر خواهد شد”

astronomy-magazine-announces-first-ever-pluto-globe2

این گوی با کیفیت ۱۲ اینچ قطر دارد و از طریق فناوری تزریق پلاستیک ذوب شده تولید شده است و به زیبایی تمام مشخصه های پلوتو را که فضا پیما ی افق های نو به ثبت رسانده است را به تصویر می کشد.  از بخش قلبی شکل تاوباو که به احترام کلاید این نام را گرفته است تا نواحی  کوچک تر بی شمار دیگر، دهانه های آتش فشانی، زمین های یخ زده، کوه های یخی، زمین های ریگی شکل و دریاچه های یخ زده که مانند آب های روان بر روی سطح جریان داشتند. سردبیر ارشد مجله اخترشناسی ، مایکل باکیچ با دقت و زحمت فراوان برای هر یک از این مشخصه ها نام انتخاب کرده است.

تا به امروز، نمونه ای مشابه این گوی وجود نداشته است، و هم اکنون نیز گوی پلوتو جای خوشی میان طرفداران اخترشناسی، علاقه مندان به دانش سیاره ای، دانشمندان و دیگر افرادی که مایل اند جهان را زیر رو رو و زیر و خم آن را یاد بگیرند، پیدا کرده است.

تیم مجله اخترشناسی این کره را به کمک تصویر برداری هندسی و ژئوفیزیکی تیم آقای راس ای. بایبر و تیم افق های نو در ناسا به رهبری آلن استرن تولید کرده است. تمامی تصویر های روی کره توسط ابزار شناسایی تصویر برداری دور برد افق های نو (LORRI) گرفته شده اند که هنگامی که فضا پیما از پلوتو عبور می کرد و در فاصله هفت هزار و هشتصد مایلی آن قرار داشت تصاویر به ثبت رسیدند.

نظرات و دیدگاه های خود را درباره این مطلب مفید و کاربردی با دیگر کاربران مجله اینترنتی گویا آی تی در میان بگذارید و با اشتراک گذاری این مطلب در شبکه های اجتماعی دیگران را نیز در بهره مندی از اخبار داغ دنیای نجوم  یاری رسانی کنید.

منبع: cs.astronomy